787 lines
23 KiB
Markdown
787 lines
23 KiB
Markdown
# Agentic Context Management Strategy
|
||
|
||
**Date:** January 25, 2026
|
||
**Version:** 0.1.3+
|
||
**Purpose:** AI-powered context management for multilingual, intelligent user experience
|
||
|
||
---
|
||
|
||
## 🎯 Core Philosophy: Let AI Handle AI Context
|
||
|
||
### **The Problem with Hardcoded Solutions**
|
||
|
||
**Previous Approach (FLAWED):**
|
||
```javascript
|
||
// ❌ English-only, brittle, not scalable
|
||
if (content.includes('outline') || content.includes('structure')) {
|
||
return 'create_outline';
|
||
}
|
||
```
|
||
|
||
**Issues:**
|
||
- ❌ Only works in English
|
||
- ❌ Breaks in Indonesian, Arabic, Chinese, etc.
|
||
- ❌ Misses nuanced intent
|
||
- ❌ Requires constant maintenance
|
||
- ❌ Goes against "agentic" philosophy
|
||
|
||
### **Agentic Principle**
|
||
|
||
> **"If AI is smart enough to write articles, it's smart enough to manage its own context."**
|
||
|
||
**New Approach:**
|
||
- ✅ Use AI to summarize chat history
|
||
- ✅ Use AI to detect user intent
|
||
- ✅ Language-agnostic (works in any language)
|
||
- ✅ Adapts to context automatically
|
||
- ✅ True "agentic" experience
|
||
|
||
---
|
||
|
||
## 💰 Cost Analysis: AI-Powered Context Management
|
||
|
||
### **Your Cost Reference**
|
||
|
||
```
|
||
Action: meta_description
|
||
Model: deepseek-chat-v3-032
|
||
Tokens: 510
|
||
Cost: $0.0001
|
||
```
|
||
|
||
**This is EXTREMELY cheap!** Let's use this model for context operations.
|
||
|
||
### **Proposed Actions**
|
||
|
||
#### **1. Action: `summarize_context`**
|
||
|
||
**Purpose:** Condense long chat history into key points
|
||
|
||
**Input:**
|
||
```json
|
||
{
|
||
"action": "summarize_context",
|
||
"chat_history": [
|
||
{"role": "user", "content": "Saya ingin menulis tentang keamanan WordPress"},
|
||
{"role": "assistant", "content": "[Long response in Indonesian...]"},
|
||
{"role": "user", "content": "Fokus pada plugin vulnerabilities saja"},
|
||
{"role": "assistant", "content": "[Detailed plugin security response...]"}
|
||
]
|
||
}
|
||
```
|
||
|
||
**Prompt:**
|
||
```
|
||
Summarize this conversation into key points that capture the user's intent and requirements.
|
||
Focus on:
|
||
- Main topic
|
||
- Specific focus areas
|
||
- Rejected/excluded topics
|
||
- User preferences (tone, audience, etc.)
|
||
|
||
Keep the summary concise (max 200 words) but preserve critical context.
|
||
Write in the same language as the conversation.
|
||
|
||
Output format:
|
||
TOPIC: [main topic]
|
||
FOCUS: [what to include]
|
||
EXCLUDE: [what to avoid]
|
||
PREFERENCES: [any specific requirements]
|
||
```
|
||
|
||
**Expected Output:**
|
||
```
|
||
TOPIC: WordPress security
|
||
FOCUS: Plugin vulnerabilities only
|
||
EXCLUDE: Performance optimization, backup strategies (user rejected these)
|
||
PREFERENCES: Technical audience, detailed explanations
|
||
```
|
||
|
||
**Cost Estimate:**
|
||
- Input: 4,000 tokens (long chat history)
|
||
- Output: 100 tokens (summary)
|
||
- Model: deepseek-chat-v3-032
|
||
- **Cost: ~$0.0001 per summarization**
|
||
|
||
**When to Use:**
|
||
- Chat history > 6 messages
|
||
- Before generating outline
|
||
- Before executing article
|
||
|
||
---
|
||
|
||
#### **2. Action: `detect_intent`**
|
||
|
||
**Purpose:** Understand what user wants to do next
|
||
|
||
**Input:**
|
||
```json
|
||
{
|
||
"action": "detect_intent",
|
||
"last_message": "Baiklah, sekarang buatkan outline-nya",
|
||
"has_plan": false,
|
||
"current_mode": "chat"
|
||
}
|
||
```
|
||
|
||
**Prompt:**
|
||
```
|
||
Based on the user's message, determine their intent. Choose ONE:
|
||
|
||
1. "create_outline" - User wants to create an article outline/structure
|
||
2. "start_writing" - User wants to write the full article
|
||
3. "refine_content" - User wants to improve existing content
|
||
4. "continue_chat" - User wants to continue discussing/exploring
|
||
5. "clarify" - User is asking questions or needs clarification
|
||
|
||
Consider:
|
||
- The user's explicit request
|
||
- Whether they have an outline already (has_plan: {has_plan})
|
||
- Current mode (current_mode: {current_mode})
|
||
|
||
Respond with ONLY the intent code (e.g., "create_outline").
|
||
```
|
||
|
||
**Expected Output:**
|
||
```
|
||
create_outline
|
||
```
|
||
|
||
**Cost Estimate:**
|
||
- Input: 100 tokens (last message + context)
|
||
- Output: 5 tokens (intent code)
|
||
- Model: deepseek-chat-v3-032
|
||
- **Cost: ~$0.00002 per detection**
|
||
|
||
**When to Use:**
|
||
- After every user message in Chat mode
|
||
- To show contextual action buttons
|
||
- To auto-suggest next steps
|
||
|
||
---
|
||
|
||
## 📊 Cost Comparison: Full History vs AI-Powered
|
||
|
||
### **Scenario: 5 Agent + 4 Human Messages**
|
||
|
||
| Approach | Input Tokens | Output Tokens | Cost per Request | Quality | Language Support |
|
||
|----------|--------------|---------------|------------------|---------|------------------|
|
||
| **Full History** | 4,365 | 0 | $0.013 (Claude) | ✅ Best | ✅ All |
|
||
| **AI Summarization** | 100 (summary) | 0 | $0.003 (Claude) + $0.0001 (summary) | ✅ Good | ✅ All |
|
||
| **Hardcoded Pruning** | 1,800 | 0 | $0.005 (Claude) | ⚠️ Fair | ❌ English only |
|
||
| **No Context** | 0 | 0 | $0.000 | ❌ Poor | ✅ All |
|
||
|
||
### **Cost Breakdown for 100 Articles/Month**
|
||
|
||
**Full History:**
|
||
- Planning: 100 × $0.00033 = $0.033
|
||
- Execution: 100 × $0.013 = $1.30
|
||
- **Total: $1.33/month**
|
||
|
||
**AI Summarization:**
|
||
- Summarization: 100 × $0.0001 = $0.01
|
||
- Planning: 100 × $0.00008 = $0.008
|
||
- Execution: 100 × $0.003 = $0.30
|
||
- **Total: $0.32/month**
|
||
- **Savings: $1.01/month (76% reduction)**
|
||
|
||
**Intent Detection:**
|
||
- Per message: $0.00002
|
||
- Average 10 messages per article: 100 × 10 × $0.00002 = $0.02
|
||
- **Total: $0.02/month (negligible)**
|
||
|
||
---
|
||
|
||
## 🎯 The Big Picture: Agentic Experience
|
||
|
||
### **User Journey Analysis**
|
||
|
||
**Current Flow (Fragmented):**
|
||
```
|
||
1. User opens editor
|
||
2. User manually switches to Chat mode
|
||
3. User types message
|
||
4. Agent responds
|
||
5. User types more
|
||
6. Agent responds
|
||
7. User manually switches to Planning mode
|
||
8. User types "create outline"
|
||
9. Outline generated
|
||
10. User manually clicks "Start Writing"
|
||
11. Article generated
|
||
```
|
||
|
||
**Problems:**
|
||
- Too many manual mode switches
|
||
- User must know when to switch
|
||
- No guidance on next steps
|
||
- Friction in workflow
|
||
|
||
---
|
||
|
||
### **Proposed Agentic Flow (Seamless):**
|
||
|
||
```
|
||
1. User opens editor (any mode)
|
||
2. User types: "Saya ingin menulis tentang keamanan WordPress"
|
||
3. Agent responds with suggestions
|
||
4. User types: "Fokus pada plugin vulnerabilities"
|
||
5. Agent responds with refined ideas
|
||
6. 💡 UI shows: [📝 Ready to create outline?] (AI-detected intent)
|
||
7. User clicks button (or types "yes" or "buatkan outline")
|
||
8. ✨ AI summarizes chat history (0.1 seconds)
|
||
9. Outline generated with clean context
|
||
10. 💡 UI shows: [✍️ Start Writing] (auto-suggested)
|
||
11. User clicks
|
||
12. Article generated
|
||
```
|
||
|
||
**Improvements:**
|
||
- ✅ No manual mode switching needed
|
||
- ✅ AI suggests next steps proactively
|
||
- ✅ Context automatically optimized
|
||
- ✅ Smooth, guided experience
|
||
- ✅ Works in any language
|
||
|
||
---
|
||
|
||
## 🔧 Implementation Design
|
||
|
||
### **Backend: New Actions**
|
||
|
||
```php
|
||
/**
|
||
* Handle context summarization request.
|
||
*
|
||
* @param WP_REST_Request $request REST request.
|
||
* @return WP_REST_Response|WP_Error Response.
|
||
*/
|
||
public function handle_summarize_context( $request ) {
|
||
$params = $request->get_json_params();
|
||
$chat_history = $params['chatHistory'] ?? array();
|
||
|
||
if ( empty( $chat_history ) || count( $chat_history ) < 4 ) {
|
||
// No need to summarize short history
|
||
return new WP_REST_Response(
|
||
array(
|
||
'summary' => '',
|
||
'use_full_history' => true,
|
||
),
|
||
200
|
||
);
|
||
}
|
||
|
||
// Build summarization prompt
|
||
$history_text = '';
|
||
foreach ( $chat_history as $msg ) {
|
||
$role = ucfirst( $msg['role'] ?? 'Unknown' );
|
||
$content = $msg['content'] ?? '';
|
||
$history_text .= "{$role}: {$content}\n\n";
|
||
}
|
||
|
||
$prompt = "Summarize this conversation into key points that capture the user's intent and requirements.
|
||
|
||
Focus on:
|
||
- Main topic
|
||
- Specific focus areas
|
||
- Rejected/excluded topics
|
||
- User preferences (tone, audience, etc.)
|
||
|
||
Keep the summary concise (max 200 words) but preserve critical context.
|
||
Write in the same language as the conversation.
|
||
|
||
Output format:
|
||
TOPIC: [main topic]
|
||
FOCUS: [what to include]
|
||
EXCLUDE: [what to avoid]
|
||
PREFERENCES: [any specific requirements]
|
||
|
||
Conversation:
|
||
{$history_text}";
|
||
|
||
$provider = WP_Agentic_Writer_OpenRouter_Provider::get_instance();
|
||
$messages = array(
|
||
array(
|
||
'role' => 'user',
|
||
'content' => $prompt,
|
||
),
|
||
);
|
||
|
||
// Use cheap model for summarization
|
||
$response = $provider->chat( $messages, array(), 'summarize' );
|
||
|
||
if ( is_wp_error( $response ) ) {
|
||
return $response;
|
||
}
|
||
|
||
// Track cost
|
||
do_action(
|
||
'wp_aw_after_api_request',
|
||
$params['postId'] ?? 0,
|
||
$response['model'] ?? '',
|
||
'summarize_context',
|
||
$response['input_tokens'] ?? 0,
|
||
$response['output_tokens'] ?? 0,
|
||
$response['cost'] ?? 0
|
||
);
|
||
|
||
return new WP_REST_Response(
|
||
array(
|
||
'summary' => $response['content'] ?? '',
|
||
'use_full_history' => false,
|
||
'cost' => $response['cost'] ?? 0,
|
||
),
|
||
200
|
||
);
|
||
}
|
||
|
||
/**
|
||
* Handle intent detection request.
|
||
*
|
||
* @param WP_REST_Request $request REST request.
|
||
* @return WP_REST_Response|WP_Error Response.
|
||
*/
|
||
public function handle_detect_intent( $request ) {
|
||
$params = $request->get_json_params();
|
||
$last_message = $params['lastMessage'] ?? '';
|
||
$has_plan = $params['hasPlan'] ?? false;
|
||
$current_mode = $params['currentMode'] ?? 'chat';
|
||
|
||
if ( empty( $last_message ) ) {
|
||
return new WP_REST_Response(
|
||
array( 'intent' => 'continue_chat' ),
|
||
200
|
||
);
|
||
}
|
||
|
||
$prompt = "Based on the user's message, determine their intent. Choose ONE:
|
||
|
||
1. \"create_outline\" - User wants to create an article outline/structure
|
||
2. \"start_writing\" - User wants to write the full article
|
||
3. \"refine_content\" - User wants to improve existing content
|
||
4. \"continue_chat\" - User wants to continue discussing/exploring
|
||
5. \"clarify\" - User is asking questions or needs clarification
|
||
|
||
Consider:
|
||
- The user's explicit request
|
||
- Whether they have an outline already (has_plan: " . ( $has_plan ? 'true' : 'false' ) . ")
|
||
- Current mode (current_mode: {$current_mode})
|
||
|
||
User's message: \"{$last_message}\"
|
||
|
||
Respond with ONLY the intent code (e.g., \"create_outline\").";
|
||
|
||
$provider = WP_Agentic_Writer_OpenRouter_Provider::get_instance();
|
||
$messages = array(
|
||
array(
|
||
'role' => 'user',
|
||
'content' => $prompt,
|
||
),
|
||
);
|
||
|
||
$response = $provider->chat( $messages, array(), 'intent_detection' );
|
||
|
||
if ( is_wp_error( $response ) ) {
|
||
return $response;
|
||
}
|
||
|
||
// Track cost
|
||
do_action(
|
||
'wp_aw_after_api_request',
|
||
$params['postId'] ?? 0,
|
||
$response['model'] ?? '',
|
||
'detect_intent',
|
||
$response['input_tokens'] ?? 0,
|
||
$response['output_tokens'] ?? 0,
|
||
$response['cost'] ?? 0
|
||
);
|
||
|
||
$intent = trim( strtolower( $response['content'] ?? 'continue_chat' ) );
|
||
|
||
return new WP_REST_Response(
|
||
array(
|
||
'intent' => $intent,
|
||
'cost' => $response['cost'] ?? 0,
|
||
),
|
||
200
|
||
);
|
||
}
|
||
```
|
||
|
||
---
|
||
|
||
### **Frontend: Agentic UX**
|
||
|
||
```javascript
|
||
// Auto-detect intent after each message
|
||
const handleMessageSent = async (userMessage) => {
|
||
// Send message to chat
|
||
const chatResponse = await sendChatMessage(userMessage);
|
||
|
||
// Detect intent in background
|
||
const intentResponse = await fetch('/wp-json/wp-agentic-writer/v1/detect-intent', {
|
||
method: 'POST',
|
||
body: JSON.stringify({
|
||
lastMessage: userMessage,
|
||
hasPlan: !!currentPlan,
|
||
currentMode: agentMode,
|
||
postId: postId
|
||
})
|
||
});
|
||
|
||
const { intent } = await intentResponse.json();
|
||
|
||
// Show contextual action based on intent
|
||
setDetectedIntent(intent);
|
||
showContextualAction(intent);
|
||
};
|
||
|
||
// Render contextual action buttons
|
||
const renderContextualAction = () => {
|
||
if (!detectedIntent) return null;
|
||
|
||
switch (detectedIntent) {
|
||
case 'create_outline':
|
||
return (
|
||
<div className="contextual-action">
|
||
<p>💡 Ready to create an outline?</p>
|
||
<button onClick={handleCreateOutlineWithSummary} className="primary">
|
||
📝 Create Outline
|
||
</button>
|
||
</div>
|
||
);
|
||
|
||
case 'start_writing':
|
||
if (!currentPlan) {
|
||
return (
|
||
<div className="contextual-action">
|
||
<p>⚠️ You need an outline first</p>
|
||
<button onClick={handleCreateOutlineWithSummary}>
|
||
📝 Create Outline First
|
||
</button>
|
||
</div>
|
||
);
|
||
}
|
||
return (
|
||
<div className="contextual-action">
|
||
<p>💡 Ready to write the article?</p>
|
||
<button onClick={handleStartWriting} className="primary">
|
||
✍️ Start Writing
|
||
</button>
|
||
</div>
|
||
);
|
||
|
||
case 'refine_content':
|
||
return (
|
||
<div className="contextual-action">
|
||
<p>💡 Use @block to refine specific sections</p>
|
||
</div>
|
||
);
|
||
|
||
default:
|
||
return null;
|
||
}
|
||
};
|
||
|
||
// Create outline with AI summarization
|
||
const handleCreateOutlineWithSummary = async () => {
|
||
setIsLoading(true);
|
||
|
||
// Step 1: Summarize chat history if needed
|
||
let contextToSend = messages;
|
||
|
||
if (messages.length > 6) {
|
||
showStatus('Optimizing context...');
|
||
|
||
const summaryResponse = await fetch('/wp-json/wp-agentic-writer/v1/summarize-context', {
|
||
method: 'POST',
|
||
body: JSON.stringify({
|
||
chatHistory: messages,
|
||
postId: postId
|
||
})
|
||
});
|
||
|
||
const { summary, use_full_history, cost } = await summaryResponse.json();
|
||
|
||
if (!use_full_history && summary) {
|
||
// Use summarized context
|
||
contextToSend = [
|
||
{
|
||
role: 'system',
|
||
content: `Context Summary:\n${summary}`
|
||
},
|
||
...messages.slice(-2) // Keep last exchange
|
||
];
|
||
|
||
console.log('Context optimized. Cost:', cost);
|
||
}
|
||
}
|
||
|
||
// Step 2: Generate outline with optimized context
|
||
showStatus('Creating outline...');
|
||
|
||
const outlineResponse = await fetch('/wp-json/wp-agentic-writer/v1/generate-plan', {
|
||
method: 'POST',
|
||
body: JSON.stringify({
|
||
topic: extractTopic(messages),
|
||
chatHistory: contextToSend,
|
||
postId: postId,
|
||
postConfig: postConfig,
|
||
stream: true
|
||
})
|
||
});
|
||
|
||
// Handle streaming response...
|
||
};
|
||
```
|
||
|
||
---
|
||
|
||
## 🎨 UX Enhancements
|
||
|
||
### **1. Contextual Action Cards**
|
||
|
||
```
|
||
┌─────────────────────────────────────────────────────┐
|
||
│ Agent: "I can help you create a comprehensive │
|
||
│ outline for WordPress plugin security..." │
|
||
├─────────────────────────────────────────────────────┤
|
||
│ 💡 Detected Intent: Create Outline │
|
||
│ │
|
||
│ [📝 Create Outline] [💬 Continue Discussing] │
|
||
│ │
|
||
│ 💰 Context will be optimized (~$0.0001) │
|
||
└─────────────────────────────────────────────────────┘
|
||
```
|
||
|
||
### **2. Context Optimization Indicator**
|
||
|
||
```
|
||
┌─────────────────────────────────────────────────────┐
|
||
│ ⚡ Optimizing context... │
|
||
│ • 9 messages → Summary (200 words) │
|
||
│ • Token reduction: 4,365 → 450 (90%) │
|
||
│ • Cost: $0.0001 │
|
||
│ ✓ Done in 0.2s │
|
||
└─────────────────────────────────────────────────────┘
|
||
```
|
||
|
||
### **3. Smart Mode Transitions**
|
||
|
||
```
|
||
User in Chat mode types: "buatkan outline-nya"
|
||
|
||
┌─────────────────────────────────────────────────────┐
|
||
│ 💡 Switching to Planning mode... │
|
||
│ • Detected intent: Create outline │
|
||
│ • Optimizing 7 messages of context │
|
||
│ • Generating outline... │
|
||
└─────────────────────────────────────────────────────┘
|
||
|
||
[Outline appears]
|
||
|
||
┌─────────────────────────────────────────────────────┐
|
||
│ ✨ Outline ready! │
|
||
│ │
|
||
│ Next step: │
|
||
│ [✍️ Start Writing Article] │
|
||
└─────────────────────────────────────────────────────┘
|
||
```
|
||
|
||
---
|
||
|
||
## 📊 Decision Matrix: When to Use What?
|
||
|
||
| Situation | Recommended Approach | Reason |
|
||
|-----------|---------------------|--------|
|
||
| **Chat history ≤ 4 messages** | Send full history | Short enough, no optimization needed |
|
||
| **Chat history 5-8 messages** | AI summarization | Balance cost and quality |
|
||
| **Chat history > 8 messages** | AI summarization + last 2 | Keep recent context verbatim |
|
||
| **User switches modes** | Detect intent | Guide user to next action |
|
||
| **Before outline generation** | Summarize context | Clean, focused input |
|
||
| **Before article execution** | Use plan (no chat history) | Plan already has all context |
|
||
| **Block refinement** | No chat history | Block content is sufficient |
|
||
| **User types "/reset"** | Clear all context | Fresh start |
|
||
|
||
---
|
||
|
||
## 🎯 Recommendation: Hybrid Intelligent Approach
|
||
|
||
### **The Winning Strategy**
|
||
|
||
**Combine AI-powered + Smart Defaults:**
|
||
|
||
1. **Default Behavior (No User Action)**
|
||
- Chat history ≤ 4 messages → Send full history
|
||
- Chat history > 4 messages → Auto-summarize with AI
|
||
- Cost: ~$0.0001 per summarization (negligible)
|
||
|
||
2. **Intent Detection (Automatic)**
|
||
- After every user message → Detect intent
|
||
- Show contextual action buttons
|
||
- Cost: ~$0.00002 per detection (negligible)
|
||
|
||
3. **User Control (Optional)**
|
||
- Settings: "Context Mode" → Auto/Full/Minimal
|
||
- "/reset" command → Clear context
|
||
- Manual selection UI (advanced users)
|
||
|
||
### **Why This Works**
|
||
|
||
✅ **Language-Agnostic**
|
||
- Works in English, Indonesian, Arabic, Chinese, etc.
|
||
- No hardcoded keywords
|
||
|
||
✅ **Cost-Effective**
|
||
- 76% cost reduction vs full history
|
||
- Total added cost: ~$0.34/month for 100 articles
|
||
- ROI: Better quality + Lower cost
|
||
|
||
✅ **True Agentic Experience**
|
||
- AI manages its own context
|
||
- Proactive suggestions
|
||
- Seamless workflow
|
||
- No manual mode switching
|
||
|
||
✅ **User-Friendly**
|
||
- Automatic by default
|
||
- Optional manual control
|
||
- Transparent (shows what's happening)
|
||
- Fast (summarization takes 0.1-0.3s)
|
||
|
||
---
|
||
|
||
## 🔧 Implementation Plan
|
||
|
||
### **Phase 1: Core Infrastructure** (Week 1)
|
||
|
||
**Backend:**
|
||
- [ ] Add `/summarize-context` endpoint
|
||
- [ ] Add `/detect-intent` endpoint
|
||
- [ ] Add `summarize` and `intent_detection` operation types to cost tracking
|
||
- [ ] Update OpenRouter provider to support these actions
|
||
|
||
**Frontend:**
|
||
- [ ] Add `handleSummarizeContext()` function
|
||
- [ ] Add `handleDetectIntent()` function
|
||
- [ ] Add context optimization indicator component
|
||
|
||
**Testing:**
|
||
- [ ] Test summarization in English, Indonesian, Arabic
|
||
- [ ] Test intent detection in multiple languages
|
||
- [ ] Verify cost tracking
|
||
|
||
### **Phase 2: UX Integration** (Week 2)
|
||
|
||
**Frontend:**
|
||
- [ ] Add contextual action cards
|
||
- [ ] Auto-detect intent after each message
|
||
- [ ] Show "Optimizing context..." status
|
||
- [ ] Add smart mode transitions
|
||
|
||
**Settings:**
|
||
- [ ] Add "Context Mode" setting (Auto/Full/Minimal)
|
||
- [ ] Add context optimization toggle
|
||
- [ ] Add cost estimates in settings
|
||
|
||
**Testing:**
|
||
- [ ] Test full user journey (chat → outline → write)
|
||
- [ ] Test in multiple languages
|
||
- [ ] Verify smooth transitions
|
||
|
||
### **Phase 3: Advanced Features** (Week 3)
|
||
|
||
**Features:**
|
||
- [ ] Add `/reset` command
|
||
- [ ] Add manual context selection UI (optional)
|
||
- [ ] Add context analytics (token usage, cost breakdown)
|
||
- [ ] Add context caching (reuse summaries)
|
||
|
||
**Optimization:**
|
||
- [ ] Implement smart caching for summaries
|
||
- [ ] Add context relevance scoring
|
||
- [ ] Optimize prompt templates
|
||
|
||
**Documentation:**
|
||
- [ ] Update user guide
|
||
- [ ] Add context management section
|
||
- [ ] Document cost implications
|
||
|
||
---
|
||
|
||
## 💰 Final Cost Analysis
|
||
|
||
### **Per Article (Average)**
|
||
|
||
| Component | Cost | Frequency |
|
||
|-----------|------|-----------|
|
||
| Intent detection | $0.00002 × 10 messages | = $0.0002 |
|
||
| Context summarization | $0.0001 × 1 time | = $0.0001 |
|
||
| Planning (with summary) | $0.003 | = $0.003 |
|
||
| Execution (no history) | $0.50-$2.00 | = $1.00 avg |
|
||
| **Total per article** | | **≈ $1.0033** |
|
||
|
||
**Compared to Full History:**
|
||
- Full history approach: $1.013 per article
|
||
- AI-powered approach: $1.0033 per article
|
||
- **Savings: $0.01 per article** (negligible)
|
||
|
||
**But wait - the real benefit:**
|
||
- ✅ Better quality (clean, focused context)
|
||
- ✅ Language-agnostic (works everywhere)
|
||
- ✅ Better UX (proactive suggestions)
|
||
- ✅ Scalable (no hardcoded rules)
|
||
|
||
---
|
||
|
||
## 🎯 Answer to Your Question
|
||
|
||
### **"Send all chat history vs AI summarization?"**
|
||
|
||
**Answer: AI Summarization is Better**
|
||
|
||
**Reasons:**
|
||
|
||
1. **Cost is Nearly Identical**
|
||
- Full history: $1.013/article
|
||
- AI summary: $1.0033/article
|
||
- Difference: $0.01 (1% savings)
|
||
|
||
2. **Quality is Better**
|
||
- Summary removes contradicted ideas
|
||
- Summary focuses on final intent
|
||
- Summary prevents pollution
|
||
- AI explicitly told what to focus on
|
||
|
||
3. **Language Support**
|
||
- Full history: Works in all languages ✅
|
||
- AI summary: Works in all languages ✅
|
||
- Hardcoded: Only English ❌
|
||
|
||
4. **Agentic Experience**
|
||
- AI managing AI context = true agentic
|
||
- Proactive intent detection
|
||
- Seamless workflow
|
||
- No user friction
|
||
|
||
5. **Scalability**
|
||
- No hardcoded rules to maintain
|
||
- Adapts to new languages automatically
|
||
- Handles edge cases gracefully
|
||
|
||
### **The Plan:**
|
||
|
||
1. ✅ **Implement AI summarization** (not hardcoded)
|
||
2. ✅ **Implement AI intent detection** (not hardcoded)
|
||
3. ✅ **Make it automatic** (no user action needed)
|
||
4. ✅ **Add user controls** (optional override)
|
||
5. ✅ **Track costs transparently** (show user what's happening)
|
||
|
||
---
|
||
|
||
**Status:** 🚀 READY TO IMPLEMENT
|
||
**Approach:** AI-Powered (Agentic)
|
||
**Cost Impact:** Negligible (+$0.34/month for 100 articles)
|
||
**Quality Impact:** Significant improvement
|
||
**UX Impact:** Seamless, guided experience
|