Files
meet-hub/analyze_final.py
dwindown a9ad84eb23 Fix duplicate video embed when youtube_url is empty string
- Add .trim() checks to all video source conditions
- Prevents rendering empty youtube_url as valid video
- Fixes double embed card display issue
- Update sidebar icon check to use optional chaining with trim

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Sonnet 4.5 <noreply@anthropic.com>
2025-12-30 21:11:35 +07:00

180 lines
6.0 KiB
Python

#!/usr/bin/env python3
"""
Analyze video transcript to identify topics and create chapter divisions.
"""
import json
import re
from datetime import timedelta
def seconds_to_timestamp(seconds):
"""Convert seconds to readable timestamp."""
total_seconds = int(float(seconds))
hours, remainder = divmod(total_seconds, 3600)
minutes, seconds = divmod(remainder, 60)
return f"{hours:02d}:{minutes:02d}:{seconds:02d}"
def load_transcript(file_path):
"""Load JSON transcript file."""
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
return data
def extract_segments(data):
"""Extract transcript segments with timestamps."""
segments = []
for track in data[0]['tracks']:
if 'transcript' in track:
for item in track['transcript']:
start = float(item.get('start', 0))
dur = float(item.get('dur', 0))
text = item.get('text', '').strip()
if text and text != '\n':
segments.append({
'start': start,
'end': start + dur,
'text': text
})
# Sort by start time
segments.sort(key=lambda x: x['start'])
return segments
def extract_keywords(text):
"""Extract key topics from text."""
keywords = {
'Market & Community': ['market', 'pasar', 'grup', 'komunitas', 'telegram', 'facebook', 'forum'],
'Problem Finding': ['masalah', 'problem', 'kesulitan', 'permasalahan', 'error', 'bermasalah'],
'Exploration': ['explor', 'coba', 'trial', 'nyoba', 'eksplor', 'explore'],
'Personal Branding': ['branding', 'personal branding', 'show off', 'image', 'eksistensi'],
'AIDA/Funnel': ['aida', 'awareness', 'interest', 'desire', 'action', 'funel', 'funnel'],
'Trust': ['trust', 'percaya', 'kepercayaan'],
'Clients': ['klien', 'client', 'pelanggan', 'customer'],
'Pricing': ['harga', 'price', 'bayar', 'budget', 'rp', 'juta', 'ribu', 'dibayar'],
'Negotiation': ['tawar', 'negosiasi', 'deal'],
'Services': ['jasa', 'service', 'website', 'plugin', 'elementor', 'instal'],
'Cold/Warm/Hot Market': ['cold market', 'warm market', 'hot market', 'dingin', 'hangat'],
'Network': ['network', 'jaringan', 'koneksi', 'hubungan'],
'Sharing': ['sharing', 'share', 'bagi'],
'Products': ['produk', 'product', 'template'],
'Japri': ['japri', 'private', 'chat pribadi'],
}
found = []
text_lower = text.lower()
for topic, kw_list in keywords.items():
count = sum(1 for kw in kw_list if kw.lower() in text_lower)
if count > 0:
found.append((topic, count))
return sorted(found, key=lambda x: x[1], reverse=True)
def analyze_video():
"""Analyze the video transcript."""
file_path = "/Users/dwindown/CascadeProjects/MeetDwindiCom/access-hub/Live Zoom - Diskusi Cara Jual Jasa via Online.json"
print("="*80)
print("VIDEO TRANSCRIPT ANALYSIS")
print("Cara Jual Jasa via Online (How to Sell Services Online)")
print("="*80)
print()
data = load_transcript(file_path)
segments = extract_segments(data)
print(f"Total segments: {len(segments)}")
if not segments:
print("No segments found!")
return
total_duration = segments[-1]['end']
print(f"Total duration: {seconds_to_timestamp(total_duration)} ({total_duration/60:.1f} minutes)\n")
# Create time-based groups every 5 minutes
print("="*80)
print("CONTENT BREAKDOWN BY 5-MINUTE INTERVALS")
print("="*80)
print()
window = 300 # 5 minutes
current_time = 0
section_num = 1
while current_time < total_duration:
window_end = min(current_time + window, total_duration)
window_segments = [s for s in segments
if current_time <= s['start'] < window_end]
if window_segments:
# Combine text
combined_text = ' '.join([s['text'] for s in window_segments])
# Extract keywords
keywords = extract_keywords(combined_text)
print(f"Section {section_num}: {seconds_to_timestamp(current_time)} - {seconds_to_timestamp(window_end)}")
print("-" * 80)
# Show first 400 characters as preview
preview = combined_text[:400]
print(f"Content: {preview}...")
print()
if keywords:
print("Key topics detected:")
for topic, count in keywords[:7]:
print(f"{topic}: {count} mentions")
else:
print("Key topics: (transition/break section)")
print()
print()
section_num += 1
current_time = window_end
# Now create suggested chapters based on content analysis
print("\n")
print("="*80)
print("SUGGESTED CHAPTER STRUCTURE")
print("="*80)
print()
# Create larger 15-minute groups for chapter suggestions
chapter_window = 900 # 15 minutes
current_time = 0
chapter_num = 1
while current_time < total_duration:
chapter_end = min(current_time + chapter_window, total_duration)
chapter_segments = [s for s in segments
if current_time <= s['start'] < chapter_end]
if chapter_segments:
combined_text = ' '.join([s['text'] for s in chapter_segments])
keywords = extract_keywords(combined_text)
# Get top 3 keywords for chapter title
main_topics = [kw[0] for kw in keywords[:3]]
print(f"Chapter {chapter_num}: {seconds_to_timestamp(current_time)} - {seconds_to_timestamp(chapter_end)}")
print(f"Main topics: {', '.join(main_topics)}")
# Show first 300 chars
preview = combined_text[:300].replace('\n', ' ')
print(f"Preview: {preview}...")
print()
print()
chapter_num += 1
current_time = chapter_end
if __name__ == "__main__":
analyze_video()